[多项式学习]Lagrange 插值

非常简单的算法,但是要注意避免让复杂度升到 $\Theta(n^2\log m)$。

容易验证,$n$ 次多项式 $f(x)=\sum\limits{i}y_i\prod\limits{j\ne i}\dfrac{x-x_j}{x_i-x_j}$ 过 $n+1$ 个点 $(x_i,y_i)$。

注意到如果直接求解复杂度是 $\Theta(n^2\log m)$ 的,进行优化:$f(x)=\sum\limitsiy_i\dfrac{\prod\limits{j\ne i}(x-xj)}{\prod\limits{j\ne i}(x_i-x_j)}$.

当 $xi=i$ 时容易写出:$f(x)=\sum\limits_iy_i\dfrac{\prod\limits{j}(x-j)}{(-1)^{n-i}(x-i)\cdot(n-i)!\cdot(i-1)!}$.注意到当 $i=x$ 时分母会出现 $0$,此时该项取 $y_i$ 即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/**
* @file P4781 【模板】拉格朗日插值 II.cpp
* @author Kuriyama Mirai (hermione_granger@foxmail.com)
* @brief auto 记得加 & 和 &&!
* @link https://www.luogu.com.cn/record/68162446
* @date 2022-01-27
*
* @copyright Copyright (c) 2022
*
*/
#include <cstdio>
#include <cstdlib>
#include <array>
#include <algorithm>
#include <unordered_map>
#include <vector>

namespace mirai {

constexpr int MAXN = 2005;
constexpr int MOD = 998244353;
typedef long long ll;

template <typename ll = long long>
ll pow(ll a, ll b, ll mod = MOD) {
ll res = 1;
while (b) {
if (b & 1) {
res = res * a % mod;
}
a = a * a % mod;
b >>= 1;
}
return res;
}

template <typename ll = long long>
inline ll inv(ll a, ll mod = MOD) {
return pow(a, mod - 2, mod);
}

// quick Positive MODulo.
template <typename ll = long long>
inline ll pmod(ll a, ll mod = MOD) {
return a >= mod ? a - mod : a;
}
// quick Negative MODulo.
template <typename ll = long long>
inline ll nmod(ll a, ll mod = MOD) {
return a < 0 ? a + mod : a;
}

template <typename ll = long long, std::size_t deg = MAXN, ll mod = MOD>
class poly {
public:
std::vector<ll> coe;
const ll mod_ = mod;
poly(ll val = 0) {
coe.resize(deg + 1);
coe[0] = val;
}

std::size_t degree() const {
return deg;
}
ll operator[](std::size_t x) const {
return coe[x];
}
ll& operator[](std::size_t x) {
return coe[x];
}
ll at(std::size_t x) const {
return coe.at(x);
}
ll& at(std::size_t x) {
return coe.at(x);
}

ll operator()(ll const& x) const {
ll res = coe[0], now = x;
for (std::size_t i = 1; i <= deg; ++i) {
res = (res + now * coe[i]) % mod;
now = now * x % mod;
}
return now;
}

poly<ll, deg, mod>& operator=(poly<ll, deg, mod> const& x) {
coe = x.coe;
return *this;
}
poly<ll, deg, mod>& operator+=(poly<ll, deg, mod> const& x) {
*this = *this + x;
return *this;
}
poly<ll, deg, mod>& operator-=(poly<ll, deg, mod> const& x) {
*this = *this - x;
return *this;
}
};

template <typename ll, std::size_t deg, ll mod>
inline std::size_t degree(poly<ll, deg, mod> const& x) {
return x.degree();
}

template <typename ll, std::size_t deg, ll mod>
poly<ll, deg, mod> operator+(poly<ll, deg, mod> const& x, poly<ll, deg, mod> const& y) {
poly<ll, deg, mod> res;
for (std::size_t i = 0; i <= deg; ++i) {
res[i] = pmod(x[i] + y[i], mod);
}
return res;
}

template <typename ll, std::size_t deg, ll mod>
poly<ll, deg, mod> operator-(poly<ll, deg, mod> const& x, poly<ll, deg, mod> const& y) {
poly<ll, deg, mod> res;
for (std::size_t i = 0; i <= deg; ++i) {
res[i] = nmod(x[i] - y[i], mod);
}
return res;
}

template <typename ll, std::size_t deg, ll mod>
poly<ll, deg, mod> derivative(poly<ll, deg, mod> x) {
for (std::size_t i = 0; i < deg; ++i) {
x[i] = (x[i + 1] * (i + 1)) % mod;
}
x[deg] = 0;
return x;
}

// The constant will be set to 0.
template <typename ll, std::size_t deg, ll mod>
poly<ll, deg, mod> indefinite_integral(poly<ll, deg, mod> x) {
for (std::size_t i = deg; i > 0; --i) {
x[i] = (x[i - 1] * inv(i - 1, mod)) % mod;
}
}
template <typename ll, std::size_t deg, ll mod>
inline poly<ll, deg, mod> integral(poly<ll, deg, mod> x) {
return indefinite_integral(x);
}

template <typename ll, std::size_t deg, ll mod>
inline poly<ll, deg, mod> plug_in(poly<ll, deg, mod> const& f, ll x) {
return f(x);
}

template <typename ll = long long, ll mod = MOD>
ll lagrange_polynomial_with_value(std::vector<std::pair<ll, ll>> const& points, ll const& x) {
ll res = 0;
for (auto &&i : points) {
ll now = 1, now2 = 1;
for (auto &&j : points) {
if (j.first == i.first) {
if (j.second != i.second) {
throw "Two distinct points with one x-value!";
} else {
continue;
}
}
now = now * nmod(x - j.first, mod) % mod;
now2 = now2 * nmod(i.first - j.first, mod) % mod;
}
res = (res + i.second * now % mod * inv(now2, mod)) % mod;
}
return res;
}


int main(int argc, char** argv) {
int n;
long long val;
std::scanf("%d%lld", &n, &val);
std::vector<std::pair<long long, long long>> points;
points.resize(n);
for (auto &i : points) {
std::scanf("%lld%lld", &i.first, &i.second);
}
std::printf("%lld\n", lagrange_polynomial_with_value(points, val));
return 0;
}

}

int main(int argc, char** argv) {
return mirai::main(argc, argv);
}